A local limit theorem for triple connections in subcritical Bernoulli percolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A local limit theorem for triple connections in subcritical Bernoulli percolation

We prove a local limit theorem for the probability of a site to be connected by disjoint paths to three points in subcritical Bernoulli percolation on Zd, d ≥ 2 in the limit where their distances tend to infinity.

متن کامل

The Local Limit Theorem: A Historical Perspective

The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...

متن کامل

Brownian Bridge Asymptotics for the Subcritical Bernoulli Bond Percolation

For the d-dimensional model of a subcritical bond percolation (p < pc) and a point ~a in Zd, we prove that a cluster conditioned on connecting points (0, ..., 0) and n~a if scaled by 1 n‖~a‖ along ~a and by 1 √ n in the orthogonal direction converges asymptotically to Time × (d− 1)-dimensional Brownian Bridge.

متن کامل

Parabolic Harnack Inequality and Local Limit Theorem for Percolation Clusters

We consider the random walk on supercritical percolation clusters in Z . Previous papers have obtained Gaussian heat kernel bounds, and a.s. invariance principles for this process. We show how this information leads to a parabolic Harnack inequality, a local limit theorem and estimates on the Green’s function.

متن کامل

The Brownian Bridge Asymptotics in the Subcritical Phase of Bernoulli Bond Percolation Model

For a given point ~a in Zd, we prove that a cluster in the d-dimensional subcritical Bernoulli bond percolation model conditioned on connecting points (0, ..., 0) and n~a if scaled by 1 n‖~a‖ along ~a and by 1 √ n in the orthogonal directions converges asymptotically to Time × (d− 1)-dimensional Brownian bridge. 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2008

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-007-0129-3